Abhishek Sharma

Assistant Professor

School: School of Engineering and Science

Department: Chemistry and Chemical Biology

Building: McLean Hall

Room: 313

Phone: (201) 216-3539

Email: asharm16@stevens.edu

Website

Research

The overarching goal of Sharma lab is to design and develop novel-molecular reactivity and molecular function to ultimately accelerate the discovery of new therapeutics. 

The emergence of resistance to chemotherapeutic drugs is a prominent challenge in the treatment of cancer as well as bacterial infections. In order to overcome this challenge, it is vital to not only develop drugs with novel mechanisms of action but also to expedite the chemical synthesis of these next generation anticancer and antibacterial agents.

Our lab aims to develop novel synthetic methodologies that allow efficient construction of molecules possessing interesting structural, biological and physical properties. Another goal is to design and develop compounds that potently block the proliferative action of estrogen receptors in breast cancer. Our research program spans the areas of organic synthesis, chemical biology and medicinal chemistry. 

For more information: Visit SharmaLab 

Publications(* = corresponding author)

32) A modular and concise approach to MIDA acylboronates via chemoselective oxidation of unsymmetrical geminal diborylalkanes: Unlocking access to a novel class of acylborons; S. Lin, L. Wang, N. Aminoleslami, Y. Lao, C. Yagel, A. Sharma*, Chemical Science, 2019, Accepted, DOI: 10.1039/c9sc00378a. 31) Antagonists for constitutively active mutant estrogen receptors: Insights into the roles of antiestrogen-core and side-chain; A. Sharma,* W. Toy, V. S. Guillen, N. Sharma, J. Min, K. E. Carlson, C. G. Mayne, S. Lin, M. Sabio, G. Greene, B. S. Katzenellenbogen, S. Chandarlapaty, J. A. Katzenellenbogen, ACS Chem. Biol. 2018, 2018, 13, 3374-3384.30) New class of selective estrogen receptor degraders (SERDs): Expanding the toolbox of PROTAC degrons; L. Wang, V.S. Guillen, N. Sharma, K. Flessa, J. Min, K. E. Carlson, W. Toy, S. Braqi, B. S. Katzenellenbogen, J. A. Katzenellenbogen, S. Chandarlapaty, A. Sharma,* ACS Med. Chem. Lett. 2018, 9, 803-808.29) Recent advances in the synthesis and synthetic applications of 1,2,3-triazoles; S. Lin, A. Sharma,* Chem. Heterocycl. Compd. 2018, 54, 314-316.28) Structurally novel antiestrogens elicit differential responses from constitutively active mutant estrogen receptors in breast cancer cells and tumors; Y. Zhao, M. J. Laws, V. S. Guillen, Y. Ziegler, J. Min, A. Sharma, S. H. Kim, D. Chu, B. H. Park, S. Oesterreich, C. Mao, D. J. Shapiro, K. W. Nettles, J. A. Katzenellenbogen, B. S. Katzenellenbogen, Cancer Res. 2017, 77, 5602-5613. 27) Adamantyl antiestrogens with novel side chains reveal a spectrum of activities in suppressing estrogen receptor mediated activities in breast cancer cells; J. Min, V. S. Guillen, A. Sharma, Y. Zhao, Y. Ziegler, P. Gong, C. G. Mayne, S. Srinivasan, S. H. Kim, K. E. Carlson, K. W. Nettles, B.S. Katzenellenbogen, J. A. Katzenellenbogen, J. Med. Chem. 2017, 60,6321-6336.26) Exploring the Structural Compliancy versus Specificity of the Estrogen Receptor Using Isomeric Three-Dimensional Ligands; N. Sharma, K. Carlson, J. Nwachukwu, S. Srinivasan, A. Sharma, K. Nettles, J. A. Katzenellenbogen, ACS Chem. Biol. 2017, 12, 494-503.25) Hydroxylated di- and tri-styrylbenzenes, a new class of antiplasmodial agents: discovery and mechanism of action; N. Sharma, D. Mohanakrishnan, A. Shard, A. Sharma, A. K. Sinha, D. A. Sahal, RSC Adv. 2016, 6, 49348-49357.24) Insights into methyltransferase specificity and bioactivity of derivatives of the antibiotic plantazolicin; Y. Hao, P. M. Blair, A. Sharma, S. K. Nair, D. A. Mitchell; ACS Chem. Biol. 2015, 10, 1209-1216.23) Triaryl-substituted schiff bases are high-affinity subtype-selective ligands for the estrogen receptor; Z.-Q. Liao, C. Dong, K. E. Carlson, S. Srinivasan, J. C. Nwachukwu, R. W. Chesnut, A. Sharma, K. W. Nettles, J.A. Katzenellenbogen, H.-B. Zhou; J. Med. Chem. 2014, 57, 3532-3545.22) Synthesis of plantazolicin analogues enables dissection of ligand binding interactions of a highly selective methyltransferase; A. Sharma, P. M. Blair, D. A. Mitchell; Org. Lett. 2013, 15, 5076-5079.21) Copper-catalyzed direct secondary and tertiary C-H alkylation of azoles through a novel Heteroarene-Amine-Aldehyde/Ketone coupling; D. Vachhani, A. Sharma, E. Van der Eycken; Angew. Chemie. Int. Ed. 2013, 52, 2547-2550.20) Direct heteroarylation of tautomerizable heterocycles into unsymmetrical and symmetrical biheterocycles via Pd/Cu-catalyzed phosphonium coupling; A. Sharma, D. Vachhani, E. Van der Eycken; Org. Lett. 2012, 14, 1854-1857. 19) Developments in direct C-H arylation of (hetero)arenes under microwave irradiation; A. Sharma, D. Vachhani, E. Van der Eycken; Chem. Eur. J. 2013, 19, 1158-1168.18) Pd/Cu-catalyzed C-H arylation of 1,3,4-thiadiazoles with (hetero)aryl iodides, bromides and triflates; D. Vachhani, A. Sharma, E. Van der Eycken; J. Org. Chem. 2012, 77, 8768–8774.17) A facile diversity-oriented synthesis of imidazo[1,2-a]pyrazinones via gold-catalyzed regioselective heteroannulation of propynylaminopyrazinones; D. Vachhani, S. G. Modha, A. Sharma, E. Van der Eycken; Tetrahedron, 2013, 69, 359-365.16) Microwave-assisted synthesis of medium-sized heterocycles; A. Sharma, P. Appukkuttan; Chem. Commun. 2012, 48, 1623-1637.15) Direct olefination of benzaldehydes into hydroxy functionalized oligo-(p-phenylenevinylene)s via Pd-catalyzed heterodomino Knoevenagel-decarboxylation-Heck sequence and its application for fluoride sensing p-conjugated units; A. Sharma, N. Sharma, R. Kumar, A. Shard and A. K. Sinha, Chem. Commun. 2010, 46, 3283-3285.14) Water promoted cascade rearrangement approach towards α-aryl aldehydes from arylalkenes using N-halosuccinimides: An avenue for asymmetric oxidation using phase transfer cinchona organocatalysis; A. Sharma, N. Sharma, R. Kumar, U. Sharma and A. K. Sinha, Chem. Commun. 2009, 5299-5301.13) Tandem allylic oxidation-condensation/esterification catalyzed by silica gel: An expeditious approach towards antimalarial diaryldienones and enones from natural methoxylated phenylpropenes; A. Sharma, N. Sharma, A. Shard, R. Kumar, D. Mohankrishnan, A. K. Sinha and D. Sahal, Org. Biomol. Chem. 2011, 9, 5211-5219.12) Unique versatility of ionic liquids as clean decarboxylation catalyst cum solvent: A metal and quinoline-free paradigm towards synthesis of indoles, styrenes, stilbenes and arene derivatives under microwave irradiation in aqueous conditions; A. Sharma, R. Kumar, N. Sharma, V. Kumar and A. K. Sinha, Adv. Synth. Catal. 2008, 350, 2910-2920.11) Stilbene−chalcone hybrids: design, synthesis, and evaluation as a new class of antimalarial scaffolds that trigger cell death through stage specific apoptosis; N. Sharma, D. Mohanakrishnan, A. Shard, A. Sharma, Saima, A. K. Sinha and D. Sahal, J. Med. Chem. 2012, 55, 297-311.10) Pd-catalyzed orthogonal Knoevenagel/Perkin-decarboxylation-Heck/Suzuki sequences: Tandem transformation of benzaldehydes into hydroxy functionalized antidiabetic stilbene-cinnamoyl hybrids and unsymmetrical distyrylbenzenes; N. Sharma, A. Sharma, R. Kumar, A. Shard, Saima and A. K. Sinha, Chem. Eur. J. 2011, 17, 10350-10356.9) One-pot two-step oxidative cleavage of 1,2-arylalkenes to aryl ketones instead of arylaldehydes in an aqueous medium: A complementary approach to ozonolysis; N. Sharma, A. Sharma, R. Kumar, A. Shard and A. K. Sinha, Eur. J. Org. Chem. 2010, 6025-6032.8) Reinvestigation of structure–activity relationship of methoxylated chalcones as antimalarials: Synthesis and evaluation of 2,4,5-trimethoxy substituted patterns as lead candidates derived from abundantly available natural β-asarone; R. Kumar, D. Mohanakrishnan, A. Sharma, N. K. Kaushik, K. Kalia, A. K. Sinha and D. Sahal, Eur. J. Med. Chem. 2010, 45, 5292-5301.7) Metal-free activation of H2O2 by synergic effect of ionic liquid and microwave: chemoselective oxidation of benzylic alcohols to carbonyls and unexpected formation of anthraquinone in aqueous condition ; R. Kumar, N. Sharma, N. Sharma, A. Sharma, and A. K. Sinha, Mol. Divers.2011, 15, 687-695.6) Green methodologies in synthesis and natural product chemistry of phenolic compounds, A. K. Sinha, N. Sharma, A. Shard, A. Sharma, R. Kumar and U. K. Sharma Ind. J. Chem.: Sec. B,2009, 48, 1771-1779.5) Neutral ionic liquid [hmim]Br as a green reagent and solvent for mild and efficient dehydration of benzyl alcohols into (E)-arylalkenes under microwave irradiation, R. Kumar, A. Sharma, N. Sharma, V. Kumar and A. K. Sinha, Eur. J. Org. Chem. 2008, 5577-5582.4) Microwave assisted efficient extraction of different parts of Hippophae rhamnoides for the comparative evaluation of antioxidant activity and quantification of its phenolic constituents by RP-HPLC; U. Sharma, K. Sharma, N. Sharma, A. Sharma, H.P. Singh and A.K. Sinha, J. Ag. Food Chem. 2008, 56, 374-379.3) An unusual, mild and convenient one pot two step access to (E)-Stilbenes from hydroxyl substituted benzaldehydes and phenyl acetic acids under microwave activation: Revelation of new facet on the classical perkin reaction; A. K. Sinha, V. Kumar, A. Sharma, and A. Sharma, Tetrahedron, 2007, 63, 11070–11077.2) DDQ catalyzed benzylic acetoxylation of arylalkanes: A case of exquisitely controlled oxidation under sonochemical activation; V. Kumar, A. Sharma, M. Sharma, U. Sharma and A. K. Sinha, Tetrahedron, 2007, 63, 9718–9723.1) Remarkable synergism in methylimidazole-promoted decarboxylation of substituted cinnamic acid derivatives in basic water medium under microwave irradiation: A clean synthesis of hydroxylated (E)-stilbenes; V. Kumar, A. Sharma, A. Sharma and A. K. Sinha, Tetrahedron, 2007, 63, 7640–7646. Patents3) One-pot multicomponent synthesis of some novel hydroxy stilbene derivatives with α, β-carbonyl conjugation under microwave irradiation; A. Sharma, A. K. Sinha, R. Kumar, N. Sharma, (US patent 8716532)2) Microwave induced single step green synthesis of some novel 2-aryl aldehydes and their analogues; A. K. Sinha, A. Sharma, R. Kumar and N. Sharma, (US patent 20120041234 A1,WO/2010/097811).1) A process for the preparation of crystalline and non-hygroscopic phenolic rich colored fractions from plants; A. K. Sinha, U. Sharma, A. Sharma, N. Sharma, (WO/2010/109286, DE112010001347T5).

 

General Information

Research positions are available in the Sharma lab for motivated individuals:

Undergraduate and graduate students: Please send your CV and a cover letter describing your research and career interests to Dr. Sharma by email. You can also schedule a meeting with Dr. Sharma to learn more about our research.

Postdoctoral applicants: Please send your CV and a brief research summary describing your previous research.

Experience

Assistant Professor (11/2016-present), Stevens Institute of Technology

Postdoctoral Research Associate (2013-2016), University of Illinois at Urbana-Champaign - with Prof. John Katzenellenbogen

Postdoctoral Research Associate (2012-2013), University of Illinois at Urbana-Champaign - with Prof. Douglas A. Mitchell

FWO Postdoctoral Research Fellow (2011-2012), University of Leuven (KU Leuven), Belgium - with Prof. Erik Van der Eycken

Institutional Service
  • Academic Appeals Committee Member
  • Graduate Student Admission Committee Chair
  • SES Doctoral Committee Member
  • Faculty Search Committee Member
Honors and Awards

U.S. Department of Defense Breakthrough Award - 2018

Susan G. Komen Fellowship in breast cancer research - 2016

Marie Curie Intra-European Postdoctoral Fellowship by European Union, (Not availed) - 2012

Postdoctoral Fellowship by the Research Foundation–Flanders (FWO), Belgium - 2010

Junior/Senior Research Fellowship (CSIR-NET JRF/SRF), India - 2006

Professional Societies
  • ACS – American Chemical Society Member
Grants, Contracts, and Funds

2016-2019: Susan G. Komen Foundation Grant (Role: PI)

2019-2022: U.S. Department of Defense Breakthrough Grant (Role PI)

Selected Publications
Journal Article
  1. Lin, S.; Wang, L.; Sharma, A. (2021). Acrylic boronate: a multifunctional C3 building block for catalytic synthesis of rare organoborons and chemoselective heterobifunctional ligations. Chemical Science (22 ed., vol. 12, pp. 7924-7929).
  2. Wang, L.; Sharma, A. (2020). The Quest for Orally Available Selective Estrogen Receptor Degraders (SERDs). ChemMedChem (22 ed., vol. 15, pp. 2072-2097). Wiley.
    http://dx.doi.org/10.1002/cmdc.202000473.
  3. Sharma, A. (2019). A modular and concise approach to MIDA acylboronates via chemoselective oxidation of unsymmetrical geminal diborylalkanes: unlocking access to a novel class of acylborons. Chemical Science (vol. 10, pp. 4684-4691). Royal Society of Chemistry.
    https://pubs.rsc.org/en/Content/ArticleLanding/2019/SC/C9SC00378A#!divAbstract.
  4. Sharma, A. (2018). Antagonists for Constitutively Active Mutant Estrogen Receptors: Insights into the Roles of Antiestrogen-Core and Side-Chain. ACS Chemical Biology (12 ed., vol. 13, pp. 3374-3384). ACS (American Chemical Society).
    http://pubs.acs.org/doi/10.1021/acschembio.8b00877.
  5. Sharma, A. (2018). New Class of Selective Estrogen Receptor Degraders (SERDs): Expanding the Toolbox of PROTAC Degrons. ACS Medicinal Chemistry Letters (vol. 9, pp. 803-808). American Chemical Society.
    https://pubs.acs.org/doi/full/10.1021/acsmedchemlett.8b00106.
  6. Wang, L.; Lin, S.; Zhu, Y.; Ferrante, D.; Ishak, T.; Baba, Y.; Sharma, A.. α-Hydroxy boron-enabled regioselective access to bifunctional halo-boryl alicyclic ethers and α-halo borons. Chemical Communications (37 ed., vol. 57, pp. 4564-4567). Royal Society of Chemistry (RSC).
    http://dx.doi.org/10.1039/d1cc00336d.