Svetlana Malinovskaya

Professor

School: School of Engineering and Science

Department: Physics

Building: Burchard

Room: 509

Phone: (201) 216-8094

Fax: (201) 216-5638

Email: smalinov@stevens.edu

Website

Education
  • PhD (1993) Novosibirsk State University and The Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences (Physics and Mathematics)
Research

Atomic, Molecular and Optical Physics
Stimulated Raman spectroscopy, CARS, x-ray and Auger spectroscopy
Frequency Comb spectroscopy
Molecular cooling
Quantum many-body physics with trapped Rydberg atoms
Coherence, entanglement and decoherence
Quantum control
Dynamical symmetry breaking; non-adiabatic effects
Dynamics of collisions
Photo-induced reactions in biomolecules




Institutional Service
  • Graduate Curriculum Committee Member
  • Faculty Senate Member
  • Graduate Curriculum Committee Member
  • Member of the Faculty Senate Member
Professional Service
  • Advances in Quantum Chemistry Editorial Board Member
  • NSF Reviewer
  • Physical Review, Optics Letters Reviewer
  • Advances in Quantum Chemistry Editorial Board Member
  • Center for Quantum Science and Engineering at Stevens Leader of the Cluster on Quantum Sensing and Imaging
  • National Science Foundation Referee, member of a Review Panel
  • Physical Review, Optics Letters, Frontiers of Physics Peer Reviewed Scientific Journals
  • Annual Winter Colloquium on Physics of Quantum Electronics Organizer
Honors and Awards

Teaching Faculty Award from the Student Government Association at Stevens Institute of Technology, May 2011.
Honor Award from the Society of Graduate Physics Students of Stevens Institute of Technology, May 2011.

Professional Societies
  • OSA – Optical Society of America Member
  • APS – American Physical Society Member
  • ACS – American Chemical Society Member
Grants, Contracts, and Funds

-ONR Award 2020-2023; PI S. Malinovskaya, Title: Quantum-enhanced FAST CARS for remote detection using a multi-static platform.
- ONR Award 2017-2020; PI S. Malinovskaya, Title: Remote detection of chem/bio hazards via coherent anti-Stokes Raman spectroscopy.
- ONR Award 2016; PI S. Malinovskaya, Title: Remote detection of chem/bio hazards via coherent anti-Stokes Raman spectroscopy.
- Alexander von Humboldt Award 2014; Three-months research visit (sabbatical) of the University of Kassel, Germany.
- NSF Award 2012-2016; PI S. Malinovskaya,Title: Control of Ultracold Dynamics and Decoherence Using Optical Frequency Combs.
- NSF Award 2009-2012; PI S. Malinovskaya,Title: Ultrafast Control of Raman Transitions Using Frequency Combs:Prevention of Decoherence.
- DARPA Award 2009-2010; Title: Entanglement dynamics of qubit systems, Collaborative grant with Ting Yu, Norman Horing, Joe Eberly (University of Rochester) and Bela Hu (University of Maryland).
- NSF sponsored visits of Kavli Institute for Theoretical Physics (KITP) and Scientific Programs on i) Frontiers of Intense Laser Physics (July - Sept. 2014); ii) Fundamental Science and Applications of Ultra-Cold Polar Molecules, (March 2013); iii) Quantum Control (August 2009).

Patents and Inventions

S.A. Malinovskaya, V.S. Malinovsky, ``CARS microscopy and spectroscopy using ultrafast chirped pulses'', USP 7847933 (2010)Description: The invention is a method that uses ultrafast pulse shaping techniques that allow for selective excitation of molecules in a sample in order to generate a signal that can be processed to perform CARS microscopy or CARS spectroscopy of the sample. Two linearly chirped pulses in a Raman scheme provide selective excitation of only one target transition without disturbing any other transitions or molecules. Selectivity is guaranteed by the adiabaticity of the pulse excitation. The large bandwidth of the intense femtosecond pulse provides the flexibility necessary to manipulate by frequency components and to apply a time-dependent phase on the pulse. The importance of the method is in its unique ability to distinguish between molecules or molecular groups having very similar structural properties reflected in close vibrational frequencies, whose difference may be less than 3 cm-1.

Selected Publications
Book
  1. Malinovskaya, S.; Novikova, I. (2015). From atomic to mesoscale: The role of quantum coherence in systems of various complexities. From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities (pp. 1-262).
Book Chapter
  1. Malinovskaya, S. A.; Liu, G. (2018). Adiabatic Passage Control Methods for Ultracold Alkali Atoms and Molecules via Chirped Laser Pulses and Optical Frequency Combs. Advances in Quantum Chemistry. Advances in Quantum Chemistry (vol. 77, pp. 241--294). Uppsala, Sweden: Academic Press.
  2. Sola, I. R.; Chang, B. Y.; Malinovskaya, S.; Malinovsky, V. S. (2018). Quantum Control in Multilevel Systems. Advances In Atomic, Molecular, and Optical Physics (vol. 67, pp. 151--256). Academic Press.
  3. Malinovskaya, S.; Liu, G. (2018). Adiabatic Passage Control Methods for Ultracold Alkali Atoms and Molecules via Chirped Laser Pulses and Optical Frequency Combs. Advances in Quantum Chemistry (vol. 77, pp. 241-294).
  4. Malinovskaya, S.; Collins, T.; Patel, V. (2012). Ultrafast Manipulation of Raman Transitions and Prevention of Decoherence Using Chirped Pulses and Optical Frequency Combs. Advances in Quantum Chemistry (vol. 64, pp. 211-258).
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84864298372&origin=inward.
Conference Proceeding
  1. Pachniak, E.; Rostovtsevy, Y. V.; Malinovskaya, S. (2019). Quantum control of entanglement using spin states in Rydberg Atoms© OSA 2019. Proceedings Rochester Conference on Coherence and Quantum Optics, CQO 2019. OSA Publishing/ Conference Papers. Optical Societ of America.
  2. Pachniak, E.; Rostovtsev, Y. V.; Malinovskaya, S. (2019). Quantum control of entanglement using spin states in Rydberg atoms. Optics InfoBase Conference Papers (vol. Part F141-CQO 2019).
  3. Pachniak, E.; Rostovtsevy, Y. V.; Malinovskaya, S. (2019). Quantum control of entanglement using spin states in rydberg Atoms© OSA 2019. Proceedings Rochester Conference on Coherence and Quantum Optics, CQO 2019.
  4. Malinovsky, V. S.; Malinovskaya, S. A.; Chang, B. Y.; Sola, I. R.; Garraway, B. M. (2018). From Rabi oscillations to adiabatic passage in multi-level quantum systems with a train of weak pulses. Latin America Optics and Photonics Conference (pp. W4A--2). Optical Society of America (OSA).
  5. Malinovskaya, S. A.; Pachniak, E. (2018). Many-Body Physics with Spin States of Rydberg Atoms. 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM) (pp. 221--221). IEEE.
  6. Malinovskaya, S.; Pachniak, E. (2018). Many-Body Physics with Spin States of Rydberg Atoms. IEEE Photonics Society Summer Topicals Meeting Series, SUM 2018 (pp. 221).
  7. Malinovskaya, S. (2016). Enhanced contrast CARS for biochemical and environmental analysis. Optics InfoBase Conference Papers.
  8. Sukharev, M.; Malinovskaya, S. (2015). Collective effects in subwavelength hybrid systems: A numerical analysis. Molecular Physics (vol. 113, pp. 392-396).
  9. Kumar, P.; Malinovskaya, S.; Sola, I. R.; Malinovsky, V. S. (2014). Selective creation of maximum coherence in multi-level Λ system. Molecular Physics (3-4 ed., vol. 112, pp. 326-331).
  10. Kuznetsova, E.; Liu, G.; Malinovskaya, S. (2014). Adiabatic rapid passage two-photon excitation of a Rydberg atom. Physica Scripta (vol. T160).
  11. Collins, T. A.; Malinovskaya, S. (2013). Robust control in ultracold alkali metals using a single linearly chirped pulse. Journal of Modern Optics (1 ed., vol. 60, pp. 28-35).
  12. Patel, V.; Malinovskaya, S. (2012). Realization of population inversion under nonadiabatic conditions induced by the coupling between vibrational modes via Raman fields. International Journal of Quantum Chemistry (24 ed., vol. 112, pp. 3739-3743).
  13. Malinovskaya, S. (2011). Theory of molecular cooling using optical frequency combs in the presence of decoherence. Optics InfoBase Conference Papers.
  14. Malinovskaya, S.; Shi, W. (2010). Feshbach-to-ultracold molecular state Raman transitions via a femtosecond optical frequency comb. Journal of Modern Optics (19 ed., vol. 57, pp. 1871-1876).
  15. Malinovskaya, S.; Patel, V.; Collins, T. (2010). Internal state cooling with a femtosecond optical frequency comb. International Journal of Quantum Chemistry (15 ed., vol. 110, pp. 3080-3085).
  16. Malinovskaya, S. (2009). Optimal coherence using chirped pulse trains for enhanced imaging. Optics InfoBase Conference Papers.
  17. Malinovskaya, S.; S. Malinovsky, V. (2008). Optimal coherence via chirped pulse adiabatic passage in the presence of dephasing. Journal of Modern Optics (19-20 ed., vol. 55, pp. 3101-3108).
  18. Malinovskaya, S. (2008). Optimal coherence using chirped pulse trains for enhanced imaging. Optics InfoBase Conference Papers.
  19. Malinovskaya, S. (2007). Chirped pulse adiabatic passage in CARS for imaging of biological structure and dynamics. AIP Conference Proceedings (2 ed., vol. 963, pp. 216-218).
  20. Malinovskaya, S. (2007). Chirped pulse control methods for imaging of biological structure and dynamics. International Journal of Quantum Chemistry (15 ed., vol. 107, pp. 3151-3158).
  21. Malinovskaya, S. (2007). Chirped pulse adiabatic passage in CARS. Optics InfoBase Conference Papers.
  22. Malinovskaya, S. (2007). Chirped pulse adiabatic passage in CARS. Optics InfoBase Conference Papers.
  23. Malinovskaya, S. (2007). Chirped pulse adiabatic passage in CARS. Optics InfoBase Conference Papers.
Editorial, Book
  1. Malinovskaya, S.; Novikova, I. (2015). Foreword. From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities (pp. v-vi).
Journal Article
  1. Malinovskaya, S.; Ramaswamy, A.; Novikova, I. (2021). Developing a quantum control scheme for the detection of high energy charged particles using the strong non-linear optical response response of atomic media in EIT states. Bulletin of the American Physical Society. Washington DC: American Physical Society.
  2. Malinovskaya, S.; Chathanathil, J.; Liu, G. (2021). Effects of decoherence and propagation in remote detection of molecules using CARS. Bulletin of the American Physical Society. Washington DC: American Physical Society.
  3. Malinovskaya, S. (2021). Laser cooling using adiabatic rapid passage. Frontiers of Physics (5 ed., vol. 16).
  4. Pachniak, E.; Malinovskaya, S. (2021). Creation of quantum entangled states of Rydberg atoms via chirped adiabatic passage. Scientific Reports (1 ed., vol. 11).
  5. Ramaswamy, A.; Malinovskaya, S.; Novikova, I. (2020). A model of electromagnetically induced transparency and high energy charged particles in atomic media. Bulletin of the American Physical Society. American Physical Society.
  6. Ramaswamy, A.; Malinovskaya, S. (2020). Femtosecond optical frequency combs and applications to quantum control of three-level atomic systems. Bulletin of the American Physical Society. American Physical Society.
  7. Liu, G.; Narducci, F. A.; Malinovskaya, S. (2020). Limits to remote molecular detection via coherent anti-Stokes Raman spectroscopy using a maximal coherence control technique. Journal of Modern Optics (1 ed., vol. 67, pp. 21-25). Taylor & Francis.
  8. Pandya, N.; Liu, G.; Narducci, F. A.; Chathanathil, J.; Malinovskaya, S. (2020). Creation of the maximum coherence via adiabatic passage in the four-wave mixing process of coherent anti-Stokes Raman scattering. Chemical Physics Letters (vol. 738).
  9. Pandya, N.; Liu, G.; Narducci, F. A.; Chathanathil, J.; Malinovskaya, S. (2020). Creation of the maximum coherence via adiabatic passage in the four-wave mixing process of coherent anti-Stokes Raman scattering. Chemical Physics Letters (vol. 738, pp. 136763). Amsterdam: Elsevier.
  10. Chathanathil, J.; Liu, G.; Narducci, F.; Malinovskaya, S. (2020). A semi-classical theory of backscattering in Coherent anti-Stokes Raman Spectroscopy for remote detection. Bulletin of the American Physical Society. American Physical Society.
  11. Liu, G.; Narducci, F. A.; Malinovskaya, S. (2020). Limits to remote molecular detection via coherent anti-Stokes raman spectroscopy using a maximal coherence control technique. Journal of Modern Optics (1 ed., vol. 67, pp. 21-25).
  12. Malinovskaya, S.; Pandya, N. (2019). Decoherence analysis in a super-effective two level CARS scheme. Bulletin of the American Physical Society (pp. V06. 00007). American Physical Society.
  13. Malinovskaya, S.; Pachniak, E. (2019). Quantum Control Methodology for Creation of GHZ and W states of Rydberg atoms. Bulletin of the American Physical Society (pp. H05. 00006). American Physical Society.
  14. Malinovskaya, S. A.; Pachniak , E. (2019). Generation of entanglement in spin states of Rydberg atoms by chirped optical pulses. Advanced Materials Letters (9 ed., vol. 10, pp. 619-621). VBRI Press .
  15. Malinovskaya, S. A.; Pachniak, E.; Rostovtsev, Y. V. (2019). Generation of entanglement in spin states of Rydberg Rb atoms by chirped optical pulses. arXiv preprint arXiv:1902.00584.
  16. Malinovskaya, S. A.; Chathanathil, J.; Liu, G. (2019). The application of coherent anti-Stokes Raman spectroscopy for remote molecular detection. Bulletin of the American Physical Society (pp. V06. 00007). American Physical Society.
  17. Liu, G.; Narducci, F. A.; Malinovskaya, S. (2018). Limits to remote molecular detection via coherent anti-Stokes raman spectroscopy using a maximal coherence control technique. Journal of Modern Optics (pp. 1--5). Taylor and Francis.
    https://doi.org/10.1080/09500340.2018.1514084.
  18. Malinovskaya, S. A.; Liu, G. (2018). Creation of ultracold molecules within the lifetime scale by direct implementation of an optical frequency comb. Journal of Modern Optics (11 ed., vol. 65, pp. 1309--1317). Taylor and Francis.
  19. Liu, G.; Malinovskaya, S. (2018). Creation of ultracold molecules within the lifetime scale by direct implementation of an optical frequency comb. Journal of Modern Optics (11 ed., vol. 65, pp. 1309-1317).
  20. Malinovskaya, S. (2017). Design of many-body spin states of Rydberg atoms excited to highly tunable magnetic sublevels. Optics Letters (2 ed., vol. 42, pp. 314-317).
  21. Malinovskaya, S.; Liu, G. (2016). Harmonic spectral modulation of an optical frequency comb to control the ultracold molecules formation. Chemical Physics Letters (vol. 664, pp. 1-4).
  22. Liu, G.; Malinovskaya, S. (2015). Two-photon adiabatic passage in ultracold Rb interacting with a single nanosecond, chirped pulse. Journal of Physics B: Atomic, Molecular and Optical Physics (19 ed., vol. 48).
  23. Kumar, P.; Malinovskaya, S.; Malinovsky, V. S. (2014). Optimal control of multilevel quantum systems in the field-interaction representation. Physical Review A - Atomic, Molecular, and Optical Physics (3 ed., vol. 90).
  24. Liu, G.; Zakharov, V.; Collins, T.; Gould, P.; Malinovskaya, S. (2014). Population inversion in hyperfine states of Rb with a single nanosecond chirped pulse in the framework of a four-level system. Physical Review A - Atomic, Molecular, and Optical Physics (4 ed., vol. 89).
  25. Sukharev, M.; Malinovskaya, S. (2012). Stimulated Raman adiabatic passage as a route to achieving optical control in plasmonics. Physical Review A - Atomic, Molecular, and Optical Physics (4 ed., vol. 86).
  26. Hawkins, P. E.; Malinovskaya, S.; Malinovsky, V. S. (2012). Ultrafast geometric control of a single qubit using chirped pulses. Physica Scripta (T147 ed.).
  27. Collins, T. A.; Malinovskaya, S. (2012). Manipulation of ultracold Rb atoms using a single linearly chirped laser pulse. Optics Letters (12 ed., vol. 37, pp. 2298-2300).
  28. Patel, V.; Malinovskaya, S. (2011). Nonadiabatic effects induced by the coupling between vibrational modes via Raman fields. Physical Review A - Atomic, Molecular, and Optical Physics (1 ed., vol. 83).
  29. Kumar, P.; Malinovskaya, S. (2010). Quantum dynamics manipulation using optimal control theory in the presence of laser field noise. Journal of Modern Optics (14-15 ed., vol. 57, pp. 1243-1250).
  30. Shi, W.; Malinovskaya, S. (2010). Implementation of a single femtosecond optical frequency comb for rovibrational cooling. Physical Review A - Atomic, Molecular, and Optical Physics (1 ed., vol. 82).
  31. Patel, V.; Malinovsky, V. S.; Malinovskaya, S. (2010). Effects of phase and coupling between the vibrational modes on selective excitation in coherent anti-Stokes Raman scattering microscopy. Physical Review A - Atomic, Molecular, and Optical Physics (6 ed., vol. 81).
  32. Malinovskaya, S. (2009). Optimal coherence via adiabatic following. Optics Communications (17 ed., vol. 282, pp. 3527-3529).
  33. Malinovskaya, S. (2009). Robust control by two chirped pulse trains in the presence of decoherence. Journal of Modern Optics (6 ed., vol. 56, pp. 784-789).
  34. Corn, B.; Malinovskaya, S. (2009). An Ab initio analysis of charge redistribution upon isomerization of retinal in rhodopsin and bacteriorhodopsin. International Journal of Quantum Chemistry (13 ed., vol. 109, pp. 3131-3141).
  35. Malinovskaya, S. (2008). Prevention of decoherence by two femtosecond chirped pulse trains. Optics Letters (19 ed., vol. 33, pp. 2245-2247).
  36. Malinovskaya, S.; Malinovsky, V. S. (2007). Chirped-pulse adiabatic control in coherent anti-Stokes Raman scattering for imaging of biological structure and dynamics. Optics Letters (6 ed., vol. 32, pp. 707-709).
  37. Malinovskaya, S. (2006). Mode-selective excitation using ultrafast chirped laser pulses. Physical Review A - Atomic, Molecular, and Optical Physics (3 ed., vol. 73).
  38. Malinovskaya, S. (2005). Pulse function for control of the coherent excitation in stimulated raman spectroscopy. International Journal of Quantum Chemistry (3 ed., vol. 102, pp. 313-317).
  39. Malinovskaya, S.; Bucksbaum, P. H.; Berman, P. R. (2004). On the role of coupling in mode selective excitation using ultrafast pulse shaping in stimulated Raman spectroscopy. Journal of Chemical Physics (8 ed., vol. 121, pp. 3434-3437).
  40. Malinovskaya, S.; Bucksbaum, P. H.; Berman, P. R. (2004). Theory of selective excitation in stimulated Raman scattering. Physical Review A - Atomic, Molecular, and Optical Physics (1 ed., vol. 69, pp. 138011-138015).
  41. Malinovskaya, S.; Bucksbaum, P. H.; Berman, P. R. (2004). Theory of selective excitation in stimulated Raman scattering. Physical Review A - Atomic, Molecular, and Optical Physics (1 ed., vol. 69, pp. 5).
  42. Kollmar, M.; Steinhagen, H.; Janssen, J. P.; Goldfuss, B.; Malinovskaya, S.; Vázquez, J.; Rominger, F.; Helmchen, G. (2002). (η3-phenylallyl)(phosphanyloxazoline)palladium complexes: X-ray crystallographic studies, NMR investigations, and Ab initio/DFT calculations. Chemistry - A European Journal (14 ed., vol. 8, pp. 3103-3114).
  43. Malinovskaya, S.; Cabrera-Trujillo, R.; Sabin, J. R.; Deumens, E.; Öhrn, Y. (2002). Dynamics of proton-acetylene collisions at 30 eV. Journal of Chemical Physics (3 ed., vol. 117, pp. 1103-1108).
  44. Malinovskaya, S.; Cederbaum, L. S. (2000). Role of coherence and time in the mechanism of dynamical symmetry breaking and localization. International Journal of Quantum Chemistry (4-5 ed., vol. 80, pp. 950-957).
  45. Malinovskaya, S.; Cederbaum, L. S. (2000). Violation of electronic optical selection rules in x-ray emission by nuclear dynamics: Time-dependent formulation. Physical Review A - Atomic, Molecular, and Optical Physics (4 ed., vol. 61, pp. 427061-4270616).
  46. Malinovskaya, S.; Cederbaum, L. S. (2000). Violation of electronic optical selection rules in x-ray emission by nuclear dynamics: Time-dependent formulation. Physical Review A - Atomic, Molecular, and Optical Physics (4 ed., vol. 61, pp. 16).
  47. Malinovskaya, S.; Schastnev, P. V.; Ikorskii, V. N. (1996). Magnetic susceptibility and parameters of exchange interactions between octahedral Co(II) complexes and nitroxyl imidazoline radical. Chemical Physics Reports (8 ed., vol. 15, pp. 1171-1179).
  48. Malinovskaya, S.; Musin, R. N.; Schastnev, P. V. (1995). Analytical approximation of the conformational dependence of the exchange interaction parameters for axially coordinated Cu(II) complexes with nitroxides. Journal of Structural Chemistry (1 ed., vol. 36, pp. 23-28).
  49. Malinovskaya, S.; Schastnev, P. V.; Musin, R. N.; Ikorsky, V. N. (1993). Exchange parameters of five-spin clusters of Cu(II) coordination compounds with imidazoline nitroxide radicals. Journal of Structural Chemistry (3 ed., vol. 34, pp. 398-401).
  50. Malinovskaya, S.; Schastnev, P. V. (1993). Method and program for magnetic susceptibility calculation of a system of clusters composed of exchange-interacting paramagnetic species including the anisotropy of g-factor and zero-field splittings. Journal of Structural Chemistry (3 ed., vol. 34, pp. 394-397).
Review, Journal
  1. Malinovskaya, S.; Horton, S. L. (2013). Impact of decoherence on internal state cooling using optical frequency combs. Journal of the Optical Society of America B: Optical Physics (3 ed., vol. 30, pp. 482-488).
  2. Kumar, P.; Malinovskaya, S.; Malinovsky, V. S. (2011). Optimal control of population and coherence in three-level Λ systems. Journal of Physics B: Atomic, Molecular and Optical Physics (15 ed., vol. 44).